DeepPatient: Leveraging EHR data to predict patient outcomes

Tiago T. V. Vinhoza

Big Data Analytics and Data Science Department

DOCNET

Digitized Patient

DOCTOR IS IN

Google is using 46 billion data points to predict the medical outcomes of hospital patients

Digitized Patient - DOCNET

291 million datapoints

Predicting Patient Deterioration

- Early Detection of patient deterioration
 - Improve clinical outcomes:
 - For each hour sepsis treatment is delayed, the patient's risk of death increases by 4 percent. (New England Journal of Medicine).

- Reduce hospital costs:
 - A patient at the ICU costs 1000 euros a day to the hospital.

Predicting Patient Deterioration

• Example: NEWS2 (National Early Warning Score – UK – only vital signs

Physiological								
parameter	3	2	1	0	1	2	3	
Respiration rate (per minute)	≤8		9–11	12–20		21–24	≥25	
SpO ₂ Scale 1 (%)	≤91	92–93	94–95	≥96				
SpO ₂ Scale 2 (%)	≤83	84–85	86–87	88–92 ≥93 on air	93–94 on oxygen	95–96 on oxygen	≥97 on oxygen	
Air or oxygen?		Oxygen		Air				
Systolic blood pressure (mmHg)	≤90	91–100	101–110	111–219			≥220	
Pulse (per minute)	⊴40		41–50	51–90	91–110	111–130	≥131	
Consciousness				Alert			CVPU	
Temperature (°C)	≤35.0		35.1–36.0	36.1–38.0	38.1–39.0	≥39.1		

Some definitions before looking at the data

- An **episode** is a sequence of events that describe the stay of a patient in the hospital.
- A snapshot is a picture taken from an episode at a given point in time.

Exploratory Data Analysis: Demographics

- Training set: 21470 episodes (1 snapshot / day) from 1-year period.
 - Excluded cases: pediatric patients (<18), patients under paliative care.

• Sex: 44% men, 56% women

• Total number of snapshots: 147676

6.9 snapshots / episode (approximate length of stay)

Exploratory Data Analysis: Admission

Exploratory Data Analysis: 7-day Outcome

Major Challenge in Healthcare

Different units emphasize different signals when monitoring the patient

- Heart Rate, Blood Pressure
 - Cardiology: ~4x a day, Plastic Surgery: ~1x day
- Creatinine
 - Renal Transplant: ~1x a day, Internal Medicine: once every 2.5 days

Patient Representation

Col 1	Col 2	 Col 109	Col 1	Col 2	 Col 109	Col 1	Col 2	 Col 109	Col 1	Col 2	 Col 109
37.2	36.9	 36.6	8.50	NULL	 1.23	12	NULL	 13	120	132	 NULL

Exploratory Data Analysis

- All non-surgical units
- Steady decline of consciouness level for the deceased patients

Exploratory Data Analysis

• General Surgery Unit

02

• 2 percentage point drop for ICU-bound and deceased patients

Medication

- Very large number of medication codes
 - Group by general role:
 - Anti-Infection Antibacterial
 - Cardiovascular Anti-Arrithmya
- Feature Engineering
 - For each medication compute 4 features:
 - number of consecutive days taking medication.
 - total number of days taking medication.
 - days since last intake.
 - took medication on current day? (yes/no)
 - 4 computed features x 93 medication groups = 372 features

Exploratory Data Analysis

2

6

8

- **Internal Medicine Unit** ٠
 - Consecutive days taking antibacterials ٠
 - It takes on average 2 days to reduce C-٠ reactive protein levels (proxy for infection).

Clinical Notes

"The gold is in the clinical notes" - Edward Choi, co-author of the study titled Doctor AI: Predicting Clinical Events via Recurrent Neural Networks

- Topic Modeling using Latent Dirichlet Allocation:
 - Noisy data (typos, names, overhead).
 - Different ways to write notes in different hospital units.

Preliminary Results

• Baseline Models:

Emmanuel Ameisen AI Lead at Insight AI @EmmanuelAmeisen Mar 6 • 9 min read

Always start with a stupid model, no exceptions.

We still use dumb algorithms (rulesbased, heuristic, univariate) in medicine, developed decades ago. Eagerly await validated smart ones w/ deep neural networks #Al

- Baseline Models on Dataiku
 - Random Forests
 - Gradient Tree Boosting
 - XGBoost
- Different Feature Sets
 - Vitals/Labs
 - Vitals/Labs + Medication

Target	Features Handling							
Train / Test Set	■ I≜ Role ▼ Q AVG_6H	Handling of "AVG_6H_12H_CAT15"						
Python environment FEATURES	# AVG_6H_12H_CAT1	Role Reject Variable type	 A Categorical # Numerical 					
Features handling	# AVG_6H_12H_CAT10		 I Text [] Vector 					
Feature generation Feature reduction	# AVG_6H_12H_CAT11	Numerical handling Keep as a regular numerical featu Missing values	Impute 👻					
MODELING	# AVG_6H_12H_CAT12	Rescaling Min-max rescaling Impute with Make derived feats. Generate sqrt(x), x^2, features	Average of values					
Algorithms Hyperparameters	# AVG_6H_12H_CAT14	Min 0.10000 Mean 65.465	Max 400.80 Median 39.100					
EVALUATION	# AVG_6H_12H_CAT15 Min-max rescaling	StdDev 71.886 Distinct values 714	Mode 4.5000					
Metric	# AVG_6H_12H_CAT16 Reject	Empty cells 38.6%	Invalid cells 0.0%					
	# AVG_6H_12H_CAT17 Reject							
	# AVG_6H_12H_CAT18 Reject							
	# AVG_6H_12H_CAT3 Reject	50 100 150 200 250 300 1	004 02					

- Vitals Gradient Tree Boosting AUC: 0.735
 - Precision 10%, Recall 26% (max F1-score 5.6% rate of alarm)
 - Precision 20%, Recall 9% (about 1% rate of alarm)
 - Recent measurement were the most important

- Vitals+Medication XG Boost AUC: 0.781
 - Precision 23%, Recall 11% (about 1.1% rate of alarm)

Most important variables	
AVG_0H_6H_CAT18	
AVG_0H_6H_CAT1	
122_seg	
82_seg	
AVG_0H_6H_CAT7	
AVG_0H_6H_CAT4	

• Random Forest: AUC 0.73 (bad ROC shape)

Deep Patient approach

- Powerful to learn from sequence data.
- Capture long term dependencies and non-linear dynamics.

• Features

- Responsible unit (one-hot encoded).
- Vitals/Labs: taking AVG_24H features (make compatible with timesteps).
- Missing values
 - Forward filling + imputation with average.
- Normalization: [0,1] interval.
- Network starts deciding with 3 days of data.

- Two LSTM layers (64 cells) + dense layer (sigmoid).
- 7 time-steps (use last week of data as input).
- 15% of training data used for validation.
- Trained for 40 epochs used best epoch based on validation error.

- AUC: 0.745
 - Precision: 20%, Recall: 28% (rate of alarm 3.5%)
 - Precision: 24%, Recall: 10% (rate of alarm 1%)

But how to find the best model using 291 million datapoints?

Machine Learning?

26.000 Models tested/day

Conclusions

- Electronic Health Records: rich source of data, first step towards personalized medicine.
- Challenges:
 - Inclusion/Exclusion criteria.
 - Dealing with missing values treat missingness as features.
 - Best way to incorporate clinical notes.
 - Hyperparameter tuning.
 - LSTM Model Interpretation attention mechanism.

